Predictions of Clinical Application of the Cardiac Dynamics in Monitoring Patients With Acute Cardiac Syndrome

  • Javier Rodriguez INSIGHT Group. Faculty of Medicine, Universidad Militar Nueva Granada – Research Center Clínica del Country, Colombia
  • Signed Prieto INSIGHT Group. Research Center Clínica del Country
  • Leonardo Ramírez T1GUM Group, Faculty of Engineering. Universidad Militar Nueva Granada
Keywords: cardiac dynamic, probability, law, acute myocardial infarct

Abstract

The physical methodologies of probability and entropy, and Zipf-Mandelbrot law for quantitative evaluation of cardiac dynamics were applied simultaneously, in order to achieve a differentiation between normality and Acute Coronary Syndrome (ACS). A blind study was conducted, taking Holter monitoring tests from 50 normal subjects and 50 people with ACS who developed Acute Myocardial Infarct (AMI) and Cardiogenic Shock (CS). The maximum and minimum heart rate for each hour was taken, and the number of beats at minimum 21 hours. Probability, entropy and proportions of consecutive pairs of heart rates in numerical attractors were calculated. Zipf-Mandelbrot law was applied to cardiac frequencies grouped in ranges of 15 beats/min finding the degree of complexity of each dynamic and establishing its mathematical diagnosis. It was demonstrated that physical methodologies can evaluate more specifically the ACS, AMI and CS, with values of sensitivity and specificity of 100% and Kappa of 1.

References

Mayer C, Bachler M, Hörtenhuber M, et al. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinform 2014;15(Suppl 6):S2.

Acharya UR, Joseph KP, Kannathal N, Lim C, Suri JS. Heart rate variability: a review. Med Biol Eng Comput 2006;44:1031–1051. doi: 10.1007/s11517-006-0119-0.

American Heart Association Inc; European Society of Cardiology. Guidelines - heart rate variability. Eur Heart J 1996;17:354–381.

Vandeput S, Verheyden B, Aubert AE, Van Huffel S. Numerical Noise Titration analysis of heart rate variability in a Healthy Population. 5th Conference of the European Study Group on Cardiovascular Oscillations Available at: ftp://ftp.esat.kuleuven.be/pub/sista/svandepu/reports/SISTA-08-34.pdf accessed 18 March 2017.

Hornero R, Aboy M, Abasolo D, McNames J, Goldstein B. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans Biomed Eng 2005;52(10):1671–1680. doi: 10.1109/TBME.2005.855722.

Rodríguez J. Entropía Proporcional de los sistemas dinámicos cardiacos: Predicciones físicas y matemáticas de la dinámica cardiaca de aplicación clínica. Rev Colomb Cardiol 2010;17(3):115-129.

Rodríguez J, Prieto S, Domínguez D, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci 2013;4(8):370-381.

Rodríguez J, Prieto S, Bernal P, et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. En: Rodríguez LG, Coordinador. La emergencia de los enfoques de la complejidad en América Latina: desafíos, contribuciones y compromisos para abordar los problemas complejos del siglo XXI. Tomo 1,1a ed. Buenos Aires: Comunidad Editora Latinoamericana; 2015. p. 315-44.

Rodríguez J, Prieto S, Correa C, et al. Proportional entropy applied to the clinical diagnostic of cardiac dynamic: blind study with 600 holter. The 61st Annual Conference of the Israel Heart Society in association with The Israel Society of Cardiothoracic Surgery. 2014.

Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C, et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca Predicciones de aplicación clínica. La emergencia de los enfoques de la complejidad en América Latina. Tomo I. Argentina: Comunidad del Pensamiento complejo. 2015;247-264.

Rodríguez J, Mendoza F, Velásquez N. Clinical application to Arrhythmic of entropy proportion. J Nucl Med Radiat Ther 2015;6(4): Insue 4.

Rodríguez J. Mathematical law of chaotic cardiac dynamic: Predictions of clinic application. J Med Med Sci 2011;2(8):1050-1059.

Rodríguez J, Prieto S, Dominguez D, et al. Application of the chaotic power law to cardiac dynamics in patients with arrhythmias. Rev Fac Med 2014;62(4):539-546.

Rodríguez J, Prieto S, Correa C, Oliveros H, Soracipa Y, Méndez L, et al. Diagnóstico físico-matemático de la dinámica cardiaca a partir de sistemas dinámicos y geometría fractal: disminución del tiempo de evaluación de la dinámica cardiaca de 21 a 16 horas. Acta Colomb Cuid Intensivo 2016;16(1):15-22.

Rodríguez J. Dynamical systems applied to dynamic variables of patients from the intensive care unit (ICU): Physical and mathematical mortality predictions on ICU. J Med Med Sci 2015;6(8):209-220.

Rodríguez J, Prieto S, Correa C, et al. Physical mathematical evaluation of the cardiac dynamic applying the Zipf – Mandelbrot law. J Mod Phys 2015;6(13):1881-1888.

Mandelbrot B. Scaling and power laws without geometry. In: The Fractal Geometry of Nature. Freeman Ed. San Francisco, 1972: 344-348.

Mandelbrot B. Structure formelle des textes et comunication. Word 1954;10:1-27.

Zipf GK. Human behaviour and the principle of least effort: an introduction to human ecology. Cambridge, Ma: Addison-Wesley, 1949.

Mandelbrot B. Árboles jerárquicos o de clasificación, y la dimensión. En: los objetos fractales. Tusquets eds SA. Barcelona. 2000:161-166.

Rodríguez J. Comportamiento fractal del repertorio T específico contra el alergeno poa p9. Rev Fac Med Univ Nac Colomb 2005;53:72-78.

Rodríguez J, Prieto S, Ortiz l, et al. Diagnóstico matemático de la monitoria fetal aplicando la ley de Zipf Mandelbrot. Rev Fac Med Univ Nac Colomb 2006;54(2):96-107.

Rodríguez J. Dynamical systems theory and Zipf – Mandelbrot law applied to the development of a fetal monitoring diagnostic methodology. XVIII Figo World Congr Gynecol Obstet. Kuala Lumpur, Malaysia: FIGO. 2006 Nov.

Rodríguez-Velásquez J, Prieto S, Bautista J, et al. Evaluación de arritmias con base en el método de ayuda diagnóstica de la dinámica cardiaca basado en la teoría de la probabilidad. Arch Med 2015;15(1):33-45.

Rodríguez J, Prieto S, Flórez M, et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Med Sci 2014;5(5):102-108.

Rodríguez J, Prieto S, Correa C, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys 2010;10(1):1-6.

Rodríguez J, Prieto S, Correa C, et al. Geometrical nuclear diagnosis and total paths of cervix cell evolution from normality to cancer. J Can Res Ther 2015;11(1):98-104.

Prieto S, Rodríguez J, Correa C, Soracipa Y. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC Med Phys 2014;14(2):1-9.

Correa C, Rodríguez J, Prieto S, et al. Geometric diagnosis of erythrocyte morphophysiology: Geometric diagnosis of erythrocyte. J Med Med Sci 2012;3(11):715-720.

Rodríguez J, Prieto S, Correa C, et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Medl Phys 2013;13(1):3.

Rodríguez J, Correa C. Predicción temporal de la epidemia de dengue en colombia: dinámica probabilista de la epidemia. Rev Salud Pública 2009;11(3):443-453.

Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública 2010;27(3):211-8.

Rodríguez J, Bernal P, Prieto P, Correa C, Álvarez L, Pinilla L, et al. Predicción de unión de péptidos de Plasmodium falciparum al HLA clase II. Probabilidad, combinatoria y entropía aplicadas a las proteínas MSP-5 y MSP-6. Arch Alerg Inmuno Clin 2013; 44(1):7-14.

Published
2018-11-05
How to Cite
Rodriguez, J., Prieto, S., & Ramírez, L. (2018). Predictions of Clinical Application of the Cardiac Dynamics in Monitoring Patients With Acute Cardiac Syndrome. Journal of the International Society for Telemedicine and EHealth, 5, (GKR);e43(1-6). Retrieved from https://journals.ukzn.ac.za/index.php/JISfTeH/article/view/304
Section
Global Telemedicine and eHealth Updates. Knowledge Resources. Vol. 10, 2017